Identification of an Active New Mutator Transposable Element in Maize

نویسندگان

  • Bao-Cai Tan
  • Zongliang Chen
  • Yun Shen
  • Yafeng Zhang
  • Jinsheng Lai
  • Samuel S. M. Sun
چکیده

Robertson's Mutator (Mu) system has been used in large scale mutagenesis in maize, exploiting its high mutation frequency, controllability, preferential insertion in genes, and independence of donor location. Eight Mutator elements have been fully characterized (Mu1, Mu2 /Mu1.7, Mu3, Mu4, Mu5, Mu6/7, Mu8, MuDR), and three are defined by TIR (Mu10, Mu11 and Mu12). The genome sequencing revealed a complex family of Mu-like-elements (MULEs) in the B73 genome. In this article, we report the identification of a new Mu element, named Mu13. Mu13 showed typical Mu characteristics by having a ∼220 bp TIR, creating a 9 bp target site duplication upon insertion, yet the internal sequence is completely different from previously identified Mu elements. Mu13 is not present in the B73 genome or a Zea mays subsp. parviglumis accession, but in W22 and several inbreds that found the Robertson's Mutator line. Analysis of mutants isolated from the UniformMu mutagenic population indicated that the Mu13 element is active in transposition. Two novel insertions were found in expressed genes. To test other unknown Mu elements, we selected six new Mu elements from the B73 genome. Southern analysis indicated that most of these elements were present in the UniformMu lines. From these results, we conclude that Mu13 is a new and active Mu element that significantly contributed to the mutagenesis in the UniformMu population. The Robertson's Mutator line may harbor other unknown active Mu elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences

The Mutator transposable element system of maize is the most active transposable element system characterized in higher plants. While Mutator has been used to generate and tag thousands of new maize mutants, the mechanism and regulation of its transposition are poorly understood. The Mutator autonomous element, MuDR, encodes two proteins: MURA and MURB. We have detected an amino acid sequence m...

متن کامل

Stable non-mutator stocks of maize have sequences homologous to the Mu1 transposable element.

Mutator stocks of maize produce mutants at many loci at rates 20- to 50-fold above spontaneous levels. Current evidence suggests that this high mutation rate is mediated by an active transposable element system, Mu. Members of this transposable element family are found in approximately 10-60 copies in Mutator stocks. We report here an initial characterization of previously undetected sequences ...

متن کامل

GENETIC STUDIES ON THE LOSS OF M u MUTATOR ACTIVITY IN MAIZE DONALD

Mutator activity of the Mu mutator system of maize can be lost by either outcrossing or inbreeding Mu stocks. The nature of these two kinds of Mu-loss phenomena was analyzed by testing the results of crossing Mu-loss stocks by active Mu lines. Outcross-Mu-loss stocks are capable of supporting Mu activity if crossed by an active mutator line. Inbred-Mu-loss stocks, however, inactivate the active...

متن کامل

Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize.

The MuDR element controls the transposition of the Mutator transposable element family in maize. Previous studies reported the presence of two major MuDR-homologous transcripts that correlate with Mutator activity. In this study, we describe the structure and processing of these two major transcripts. The transcripts are convergent, initiating from opposite ends of the element within the 220-bp...

متن کامل

Identification of a regulatory transposon that controls the Mutator transposable element system in maize.

The Mutator system of maize consists of more than eight different classes of transposable elements each of which can be found in multiple copies. All Mu elements share the approximately 220-bp terminal inverted repeats, whereas each distinct element class is defined by its unique internal sequences. The regulation of instability of this system has been difficult to elucidate due to its multigen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011